

 SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY
 SAULT STE. MARIE, ONTARIO

 COURSE OUTLINE

 Course Title: COMPUTER PROGRAMMING I

 Code No.: CSD100 Semester: FALL 1999

 Program: PROGRAMMER(2090)/PROGRAMMER ANALYST(2091)

 Instructor: DENNIS OCHOSKI

 Previously
 Date: SEPTEMBER 1999 Dated: SEPTEMBER 1998

 Approved: ___________________________ __________________

 Dean Date

COMPUTER PROGRAMMING I CSD100
___________________________ _______________
 COURSE NAME COURSE CODE

-2-

TOTAL CREDITS: 4

PREREQUISITE(S): None

I. COURSE DESCRIPTION:

This course is intended to provide a firm foundation of computer programming skills needed in the
computer studies area. It is the first of two courses that use the C/C++ programming language to
develop the student's computer programming and problem solving skills.

II. TOPICS TO BE COVERED:

1. Introduction to computer programming concepts.

2. Basic C/C++ program structure.

3. Input/output in C/C++.

4. Decisions/Conditions in C/C++.

5. Repetition/Looping in C/C++.

 6. Modularization using User-Defined Functions

COMPUTER PROGRAMMING I CSD100
___________________________ _______________
 COURSE NAME COURSE CODE

-3-

III. LEARNING OUTCOMES AND ELEMENTS OF THE PERFORMANCE:

Upon successful completion of this course the student will demonstrate the ability to:

1. Discuss and apply the concepts involved in the development of software to solve problems
using the computer. (Unit 1 - Perry and lecture notes)

This learning outcome will comprise 15% of the course.

Elements of the performance:

• define the concept of a "computer program/software"
• differentiate between prewritten software and custom-designed software
• differentiate between high level languages and machine language
• describe the top-down process of developing a program
• understand the "golden rule" for writing computer programs
• describe the purpose of a compiler/interpreter
• describe the process of transforming a source program to an executable module
• differentiate between batch processing and online processing
• write algorithms and describe them using pseudocode and flowcharts

2. Write a simple C/C++ program applying the concepts of program structure, arithmetic, and
assignment. (Units 2, 3, 4, 5, 6: pgs. 90-105, 7 and 9: pgs. 183-187)

This learning outcome will comprise 10% of the course.

Elements of the performance:

• explain the main components of a C/C++ program
• name and distinguish C/C++'s basic data types
• explain and properly use the naming conventions for C/C++ identifiers
• understand and apply simple output statements using the cout operator
• differentiate between character, string, and numeric constants
• differentiate between character and numeric variables
• declare and initialize variables correctly
• explain computer memory concepts and how they relate to processing data

COMPUTER PROGRAMMING I CSD100
___________________________ _______________
 COURSE NAME COURSE CODE

-4-

Elements of the performance(cont'd):

• use assignment operators (=, +=, -=, *=, /=, ++, --) for character and numeric data
• use the strcpy() function to assign string values to character variables
• use arithmetic operators and apply their precedence (+, -, *, /, %)
• evaluate integer and mixed-mode arithmetic correctly
• explain automatic promotion and apply typecasting to define data types
• differentiate between syntax and logic errors
• write and compile a simple program in C/C++ incorporating the concepts above

3. Develop algorithms and write C/C++ programs to solve problems involving the standard
computer operations of input and output.
(Unit 6 pgs. 106-114)

This learning outcome will comprise 10% of the course.

Elements of the performance:

• apply the cin operator to perform input of data
• apply the cout operator to perform output of data
• apply the getline() function to accept string values that include a space(s)
• apply the setw(), setprecision(), and setf() manipulators to format output on the screen
• explain the purpose of "include" files for the cin and cout operators
• write, test, and debug programs using the cin and cout operators

4. Develop algorithms and write C/C++ programs to solve problems involving the standard
computer operations of decisions/conditions and selection.
(Units 8 and 14)

This learning outcome will comprise 25% of the course.

Elements of the performance:

• describe the use of the relational and logical operators, and use them to write both simple

and complex logical expressions (==, !=, <, <=, >, >=, !, &&, ||)

COMPUTER PROGRAMMING I CSD100
___________________________ _______________
 COURSE NAME COURSE CODE

-5-

Elements of the performance(cont'd):

• describe the operation of the following C/C++ decision-making structures and use them
in C/C++ programs:

 a. if...else

 b. nested ifs
 c. if...else if...else
 d. the switch statement

• write algorithms to solve problems containing decision-making structures, and describe

them using pseudocode and flowcharts
• write, test, and debug programs containing selection structures

5. Develop algorithms and write C/C++ programs to solve problems involving the standard
computer operations of looping and repetition.
(Units 11, 12, and 13)

This learning outcome will comprise 25% of the course.

Elements of the performance:

• discuss the concept of repetition/looping in computer programs
• describe the operation of the following C/C++ repetition structures and use them in

C/C++ programs:

 a. while
 b. do...while
 c. for
 d. nested loops
 e. break and continue statements

• write algorithms to solve problems containing repetition structures, and describe them

using pseudocode and flowcharts
• describe and correct an "infinite loop" problem
• write, test, and debug programs containing repetition structures

COMPUTER PROGRAMMING I CSD100
___________________________ _______________
 COURSE NAME COURSE CODE

-6-

6. Discuss and create elementary user-written functions.
(Units 16 pgs. 331-339)

This learning outcome will comprise 15% of the course.

Elements of the performance:

• distinguish between the calling and the called functions
• understand the concept of scope
• distinguish between local and global variables

 • write, test, and debug programs containing functions

COMPUTER PROGRAMMING I CSD100
___________________________ _______________
 COURSE NAME COURSE CODE

-7-

IV. EVALUATION METHODS:

The mark for this course will be arrived at as follows:

Quizzes:
outcome #1 10%
outcomes #2 & #3 15%
outcome #4 20%
outcome #5 20%
outcome #6 10%

 75%
Assignments:

outcome #1 5%
outcomes #2 & #3 5%
outcome #4 5%
outcome #5 5%
outcome #6 5%

 25%

 Total 100%

The grading scheme used will be as follows:

A+ 90 - 100% Outstanding achievement
A 80 - 89% Excellent achievement
B 70 - 79% Average achievement
C 60 - 69% Satisfactory achievement
R < 60% Repeat the course
X Incomplete. A temporary grade limited to special circumstances have prevented the student

from completing objectives by the end of the semester. An X grade reverts
to an R grade if not upgraded within a specified time.

COMPUTER PROGRAMMING I CSD100
___________________________ _______________
 COURSE NAME COURSE CODE

-8-

V. SPECIAL NOTES

1. In order to pass this course the student must obtain an overall quiz average of 60% or better, as

well as, an overall assignment average of 60% or better. A student who is not present to write a
particular quiz, and does not notify the instructor beforehand of their intended absence, may be
subject to a zero grade on that quiz.

2. There will be no supplemental or make-up quizzes/tests at the end of the semester.

3. Assignments must be submitted by the due date according to the specifications of the

instructor. Late assignments will normally be given a mark of zero. Late assignments will
only be marked at the discretion of the instructor in cases where there were extenuating
circumstances.

4. Any assignment submissions deemed to be copied will result in a zero grade being assigned to

all students involved in that particular incident.

5. The instructor reserves the right to modify the assessment process to meet any changing needs

of the class. Consultation with the class will be done prior to any changes.

6. Students with special needs (eg. physical limitations, visual impairments, hearing impairments,

learning disabilities) are encouraged to discuss required accommodations confidentially with
the instructor.

7. Your instructor reserves the right to modify the course as he/she deems necessary to meet the

needs of students.

VI. PRIOR LEARNING ASSESSMENT:

Students who wish to apply for advanced credit in the course should consult the instructor.

VII. REQUIRED STUDENT RESOURCES

Text: Programming C++ in 12 Easy Lessons

by Greg Perry

Diskettes: minimum of 3, 3 1/2"

	V. SPECIAL NOTES
	VII. REQUIRED STUDENT RESOURCES

	Diskettes: minimum of 3, 3 1/2"

